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Abstract

The growing trend of garment waste highlights the need for effective and affordable
processes to enable a more sustainable lifecycle. Collaborative robotic systems
that support operators represent a feasible solution, but some limitations remain
related to manipulating deformable objects, such as garments. By integrating
a versatile gripper system and machine learning models trained to detect each
garment, this work suggests a solution to automate garment picking. The first
experiments highlight interesting results about effective grasping and promise
further productivity improvements.

1 Introduction

The trend in the clothing market points out that global textile production doubled since 2000, with a
further expected increase of 63% by 2030, corresponding to 102 million tonnes. Currently, 5.8 million
tonnes of textiles are landfilled or incinerated every year, with only 15% of used textiles undergoing
recycling pathways [1]. New circular business models and virtuous practices such as reuse, repair,
and recycling are increasing in importance to make the fashion industry more sustainable [2]. These
processes primarily rely on manual operations that involve humans in basic actions like garment
sorting. Manual operations impose limitations with the constant increase in volumes and robotic
systems therefore seem like an attractive alternative. Many research activities focus on developing
effective robotic solutions to grasp garments from randomly arranged volumes of textile items.
Nevertheless, open challenges remain in (i) the ability to grasp garments with different packaging
types, i.e., unpackaged or packaged with undamaged/damaged polybags; (ii) recognition of robust
grasping locations suitable for a wide range of garment categories; and (iii) picking just one garment
at a time, avoiding the grasping of multiple items. To address these challenges, we present a picking
approach based on collaborative robots, advanced grippers, and computer vision machine learning
models to support the sustainability of the garment lifecycle.

1.1 Handling of deformable objects

Picking actions with robots, i.e. pick-and-place operations, are a standard problem in robotics and
have received extensive attention. However, robotic grasping of garments still remains challenging
[14] due to their deformable nature, self-occlusion, and the huge variability in fabric types with
very different characteristics. In many applications, from production to shipping, garments can be
individually wrapped in plastic bags, and suction grippers can efficiently manipulate them. Two
interesting examples related to existing applications are proposed by Covariant [4] and Kindred [5],
that respectively suggest the use of adaptive single suction cup grippers or vacuum integrated with
parallel grippers. However, suction grippers are no longer applicable for returned goods, where the
plastic bags may be damaged or missing. In this scenario it is neither clear, what kind of gripper is
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suited to manage the different packing conditions of the garments, nor how to identify the optimal
grasping point. Recent works focused on grasping methods to manipulate garments fabrics, but
specifically on starting planar configuration [12, 6]. Further challenges arise if a robot is tasked
with picking up and moving clothes as efficiently as possible [3], or if the garments have to be
singulated [11], as required for individually inspecting and returning items to e-commerce cycles or
recycling and reuse pathways. Similar to DexNet for rigid object manipulation [7, 8], most recent
works on robotic manipulation of clothes aim to directly predict the manipulation actions from
sensory input using deep learning. Acquiring the training data to develop such methods is a challenge,
however, and in certain situations, simulations [10] or virtual reality environments [9] have therefore
been used. It emerges that an integrated robotic solution combining gripper features and garment
recognition to support the picking is still missing.

1.2 Method outline

To address the aforementioned challenges, we suggest an integrated approach considering both
hardware and software. We developed a dedicated platform to implement and assess the proposed
approach, and we also use this platform to generate the training data required for continuous im-
provement of the system. Therefore, the focus is not only on defining an initial solution but also on
obtaining real data with a simple, yet efficient fallback approach. The architecture of the suggested
approach is described in Section 2. The proposed traditional multi-stage approach already yields
excellent results, as we will evaluate in Section 3. Nevertheless, it clearly has some limitations. As
a longer-term goal, direct prediction of grasps from recorded images is planned. Thus, the current
system can be used to bootstrap the training process, as we will discuss in Section 4.

2 Method Overview

Our picking approach is depicted in Fig. 1. Thanks to a collaborative environment, supervision
activities by the human operator are easily implemented through the picking operations These
activities are related to restoring of the system after unexpected conditions as well as the management
of further data to train the detection model on new sets of garments. More in detail, the latter is
related to collection of new images, bounding boxing and labeling to detect new clothes. A dedicated
area to collect the garments serves as the source to feed the picking process. Simple boxes (#1) or
trolleys are common solutions for collecting the items. A RGB-D Camera (#2) allows collecting
digital data of the visible garments, such as 2D pictures and 3D point clouds. A collaborative robot,
Cobot (#3), enables safe continuous movements without safety fences. Alternatively, an industrial
robot with a dedicated safety system can be used, but this robot must stop if the operator moves inside
the robot’s working zone. The final important hardware is the gripping system (#4), which allows
reliable grasping of clothes with different fabrics and packages.

The software framework that drives the grasping operations follows a traditional approach with a
separate object detection module for identifying garments. Once the detection is complete, a grasp
point extraction logic determines the position for gripping the garments. Details of the developed
system are provided in the subsequent subsections: Hardware and the setup of the prototypical

Figure 1: Main hardware components of the cobotic picking system and the main actions involved.



Figure 2: Cobosort system - The prototypical platform for garment picking

platform in Section 2.1; garment detection model in Section 2.2; and grasp point extraction algorithms
in Section 2.3.

2.1 System description

The hardware in our system consists of a centrally installed Fanuc cobot, the CRX-25iA arm, which
is used to grasp garments and drop them off on a conveyor belt for further processing, such as sorting
operations. On either side of the cobot, there is a bay for a cart used to feed the garments into the
system in a more or less unsorted manner. The prototype solution has two bays to avoid idle times,
allowing the cobot to start processing one bay while the operator removes the empty cart from the
second bay and brings in a new, full cart. Above each of the bays is a Zivid One Plus depth camera
that creates RGB and depth images of the carts and their contents. Both cameras are connected to a
central processing unit that analyzes the image data, computes a grasp point, and controls the robot
movements. The whole unit is additionally equipped with three safety laser scanners at floor level
that identify people or obstacles near the unit and slow down the cobot movements to collaborative
speed (250mm/s) to ensure a safe working environment. The picking action is enabled by a dedicated
grasping system that integrates a commercial self-centering gripper by OnRobot with dedicated
sensors to return data to assess the grasping success rates. Figure 2 depicts the layout of the prototype
platform integrating the main aforementioned modules, namely the CoboSort system.

2.2 Garment detection

The garments are detected using a standard object detection approach based on YOLO classification
algorithm, specifically the YOLO v5 - XLarge (YOLOv5XL) model structure [13]. Given the
RGB images as input, bounding boxes are predicted around the identified garments. For training, a
continually growing dataset of images has been used. Table 1 collects the total number of labeled
garments used through the preliminary training sessions. Unpacked garments is the dataset related to
clothes without polybags arranged on planes, while Organized box and recorded box respectively are
datasets referring to clothes inside collecting boxes, in all the three packaging conditions. Organized
trolley and Unorganized trolley are the two configurations that recreate the working condition assumed,
where the garments are respectively well-ordered and randomly arranged inside the trolleys. Finally,
a first refinement round is performed with e new batch that is a mixture of un/organized garments,
named as Updated trolley.

Through multiple experiments, the final key training parameters adopted are collected in Tab. 2. Here,
epochs is the total number of training epochs, assuming that a single epoch represents a full pass



Table 1: Datasets used for preliminary model training

Configuration Dataset specifications

Total Training Validation

Unpacked garments 140 112 28
Organized box 500 400 100
Recorded box 38 30 8
Organized trolley 188 151 37
Unorganized trolley 212 170 42
Updated trolley 400 300 100

over the entire dataset. Parameter batch_size refers to number of images processed before updating
the internal parameters of the model. The single_cls defines how to treat the classes in the dataset.
The learning rate scheduler selected to manage the convergence of the model is defined by lr_decay.
Number of epochs to wait without improvement in validation metrics before early stopping the
training is managed by patience. Finally, freeze defines the number of layers to keep to reduce the
number of trainable parameters. The table provides the data related to experiment 14, that converged
after 45 epochs. The inference was performed on (i) a video where the model is neither trained nor
validated and (ii) a video on which the model is both trained and validated.

Table 2: YOLO model key training settings

Argument epochs batch_size single_cls lr_decay patience freeze

Value 45 16 true cosine 10 1

Figure 3, on the left side, depicts the two classes defined to train the detector, no_plastic and plastic,
respectively identified by yellow and magenta backgrounds. Nevertheless, in our experiments using
a single class (single_cls set to true) resulted in better performance. On the right side, the detected
objects are shown in a real picture returned by the Zivid camera in the final configuration.

2.3 Grasp Point Extraction

The recorded depth images are aligned with the RGB images and we can directly identify 3D points
within the detected 2D bounding boxes. The strategy adopted first sort the bounding boxes by the
average height of 3D points contained within. Then, we attempt to extract a grasp point from the
topmost box, and in case of failure, revert to the next higher box until a suitable point has been found.
For each box, we apply a series of filters: a) to remove invalid points for which no depth could be
determined, b) to eliminate points that are close to the edges of the bounding box, c) to eliminate

Figure 3: Labeling process for garment pictures with the two classes defined, left side. On the right,
trained model applied to a real collection of garments to be picked up from a cart.



potential outliers at the topmost and bottommost percentiles of 3D points, d) to ensure a minimum
distance from the edges of other detected bounding boxes, e) to ensure a minimum distance from the
most recent grasp point if that grasp failed, and f) to avoid collisions with the empty cart. Finally, we
select a point on the 3D surface that is closest to the center of gravity of the remaining points.

3 Experimental validation and evaluation

Experimental tests have been performed on the CoboSort system. The carts have been randomly
filled with garments in three different conditions, i.e. unpacked and packed with or without polybags.
Initial tests highlight that the most common source of double grasping is the detection model.
Figure 4 depicts two examples related to wrong detections.
To improve the accuracy of the model, such as to detect a new set of clothes of different kinds or with
novel fabrics and colors, recorded images are continuously stored. These images are then sent for
annotation and added to the training process to ensure a wide variety and a representative dataset for
practical applications.
Further additional 800 annotated pieces of clothes has been added in the training. Even if the
accuracy of the model was very high, this improvement was requested to manage corner cases, such
as two similar clothes placed side by side, as depicted in Fig. 4. As a result, the performances of last
training with YOLOv5XL after 45 epochs for plastic and no_plastic model are presented through
the quality metrics collected on Tab. 3. Precision measures the accuracy of the predictions, so it
is the ratio of true positives (TP) out of all positive predictions, that is the sum of true and false
positive (TP+FP). Recall measures how good all the positives are identified, so it it is the ratio of all
TP out of the number of positive instances, that is calculated as the sum of true positives and false
negative results (TP+FN). Mean Average Precision (mAP) is related to the mean of the area under
Precision/Recall curve. It represents a trade-off between Precision and Recall where the FP and FN
are evaluated through Intersection over Union (IoU) threshold. So, mAP@0.5 and mAP@0.5:0.95
relates to a Precision/Recall curve for a fixed IoU=0.5 and IoU ranges from to 0.5 to 0.95, respectively.

Table 3: Performances values of last training with YOLOv5XL

Precision Recall mAP@0.5 mAP@0.5:0.95

0.9816 0.98256 0.97925 0.85183

A stress test of the system on 10 trials for a total of 650 items returned 7 instances of double grasping,
with a success rate of 99%. The average time to complete the picking operation is 13 seconds. Further
analysis indicates that the operating speed is mostly determined by the picking trajectory, which is
currently composed of three main points: The cobot home position or the waiting point, the grasping
point, and the release point. Furthermore, two waypoints on the robot cart are also inserted to avoid
obstacles while the cobot is moving the gripper inside the cart volume, as shown in Fig. 5.

Figure 4: Two examples related to wrong detections. Grasping of multiple items is returned due to
the picking targets returned.



Figure 5: Picking trajectory; the three main points that are involved in the cobot movements

4 Conclusions and Future Plans

We proposed a system for picking and isolating garments from a box or cart. It is designed to work
together with human operators in a safe manner, thus lowering the barrier of adopting the system
into exiting processes. The designed vision system relies on RGB-D data, uses machine learning
for identifying garments and a grasp point extraction logic working on top of the detections. In our
evaluation, this simple system already achieves outstanding results with only about 1% of missed or
double grasps. This performance level opens the way to further optimizations to integrate the system
into existing workflows, and represents a step forward toward a change of fashion industry processes
towards more sustainable circular business models.

The grasping still faces problems in some rare cases and we plan to address these by directly
predicting grasp positions for the robot from the recorded image data. To achieve this, we need to
collect annotated training data and establish a basic dataset. In existing works this is often done using
simulation environments, but it is notoriously difficult to realistically simulate fabrics. Therefore, we
also view our current approach as a method to automatically record training data and bootstrap a new
training process. Once a significant number of more or less successful grasps have been observed in
real scenarios, we expect that direct regression models for predicting grasp poses will work better and
take over. Continuing the collection of samples on the fly will enable real-time performance metrics
and continual improvements of the deployed model, as well as adaptation to unseen and unanticipated
scenarios that were not covered in the training data.
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